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Simple Summary: Nowadays, colorectal cancer is the third most incident cancer worldwide and,

although it can be detected by imaging techniques, diagnosis is always based on biopsy samples.

This assessment includes neoplasia grading, a subjective yet important task for pathologists. With

the growing availability of digital slides, the development of robust and high-performance computer

vision algorithms can help to tackle such a task. In this work, we propose an approach to automatically

detect and grade lesions in colorectal biopsies with high sensitivity. The presented model attempts

to support slide decision reasoning in terms of the spatial distribution of lesions, focusing the

pathologist’s attention on key areas. Thus, it can be integrated into clinical practice as a second

opinion or as a flag for details that may have been missed at first glance.

Abstract: Colorectal cancer (CRC) diagnosis is based on samples obtained from biopsies, assessed in

pathology laboratories. Due to population growth and ageing, as well as better screening programs,

the CRC incidence rate has been increasing, leading to a higher workload for pathologists. In this

sense, the application of AI for automatic CRC diagnosis, particularly on whole-slide images (WSI),

is of utmost relevance, in order to assist professionals in case triage and case review. In this work, we

propose an interpretable semi-supervised approach to detect lesions in colorectal biopsies with high

sensitivity, based on multiple-instance learning and feature aggregation methods. The model was

developed on an extended version of the recent, publicly available CRC dataset (the CRC+ dataset

with 4433 WSI), using 3424 slides for training and 1009 slides for evaluation. The proposed method

attained 90.19% classification ACC, 98.8% sensitivity, 85.7% specificity, and a quadratic weighted

kappa of 0.888 at slide-based evaluation. Its generalisation capabilities are also studied on two

publicly available external datasets.

Keywords: weakly supervised learning; semi-supervised learning; multiple-instance learning; inter-

pretability; computational pathology; colorectal cancer

1. Introduction

Nowadays, colorectal cancer (CRC) is the third most incident (11% of all cancers)
and the second most deadly type of cancer worldwide (with a 9.5% mortality rate, only
surpassed by lung cancer, with 18.2%), according to the Globocan estimated data for 2020 [1].
In addition, the development of this type of cancer is greatly influenced by multiple factors,
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such as lifestyle, genetics, and environmental factors. Thus, with the world becoming
richer, and people adopting a western lifestyle, the incidence rates of CRC are expected to
increase [2,3]. However, despite the statistics, CRC is preventable and curable if detected in
its earlier stages by effective screening through medical examination, imaging techniques
and colonoscopy [4,5].

While CRC can be detected by imaging techniques, further diagnosis is always based
on samples obtained from biopsies and assessed by pathologists. Regarding the neoplasia
development stage, these samples can be stratified in non-neoplastic (NNeo), low-grade
dysplasia (LGD), high-grade dysplasia (HGD, including intramucosal carcinomas) and
invasive carcinomas, from the lowest to the highest level of cancer progression, respectively.
Although this grading is somewhat subjective [6], the most recent guidelines from the
European Society of Gastrointestinal Endoscopy (ESGE), as well as those from the US
multi-society task force on CRC, continue to recommend surveillance for polyps with
high-grade dysplasia, regardless of their size [5,7]. Thus, this remains an important task for
pathologists when assessing colorectal tissue samples.

Digitised slides are becoming increasingly available, in the form of whole-slide images
(WSI), with more laboratories adopting a digital workflow [8–10]. Although it requires
an additional scanning step, WSI allows pathologists to easily access old cases, share data
and peer-review cases more quickly [11,12]. Moreover, digital pathology has created many
research opportunities in the computer vision field, with the high dimensions of WSI and the
complex nature of pathology assessment bringing new challenges to advanced automatic
image processing systems [13–16]. Thus, the development of robust and high-performance
algorithms, which are transparent and as interpretable as possible, can be valuable to
assist pathologists in their daily workload [11,12]. However, despite its clinical relevance,
the application of AI for CRC diagnosis from WSI is still poorly explored and there are
some limitations that hinder its application in clinical practice, as recently highlighted by
Oliveira et al. [17].

Currently, most of the works published on CRC diagnosis focus on classifying cropped
regions of interest, or even small tiles, rather than the much more challenging task of
assessing the entire WSI, as noted in recent reviews [17–20]. Nevertheless, some authors
have already presented approaches based on the evaluation of the entire slide of colorectal
samples. Iizuka et al. [21] proposed the combination of an Inception-v3 network (tile classi-
fier) with a recurrent neural network (RNN), as a tile aggregator, to classify H&E colorectal
WSI into non-neoplastic, adenoma (AD) and adenocarcinoma (ADC), obtaining an area
under the curve (AUC) of 0.962 and 0.992 for colorectal AD and ADC, respectively. This
tiling scheme is usual in computational pathology, since WSI have high dimensions, usually
over 50,000 × 50,000 pixels, due to their pyramidal format (with several magnification
levels) [22]. Thus, these images need to be decomposed into smaller tiles to fit into the mem-
ory of the graphics processing units (GPU) often used to train deep learning (DL) models.
Wei et al. [23] aimed to distinguish different types of CRC adenomas in H&E stained slides.
The model is an ensemble of the five versions of the ResNet architecture for classifying
tiles and a hierarchical classifier for predicting a slide diagnosis, reaching an accuracy
(ACC) of 93.5% on the internal test set, and 87.0% on the external test set. Song et al. [24]
presented an approach based on a modified DeepLab-v2 network for tile classification and
pixel probability thresholding to detect CRC adenomas, which achieved an AUC of 0.92
and an ACC of over 90% on an independent test set. Similarly, Xu et al. [25] proposed an
Inception-v3-based model as a tile classifier, and a final slide classification based on tile
prediction probability for detecting CRC, obtaining an ACC of 99.9% for normal slides and
93.6% for cancer slides. In addition, using the Inception-v3 architecture, Wang et al. [26,27]
developed a framework to detect tumours which retrieves the final classification of a slide
and also a map of tumour regions. From the tile classifier, which distinguishes normal
and cancer tiles, slide prediction is obtained with a tile-cluster-based aggregation: a WSI
is positive if several positive patches are topologically connected as a cluster, e.g., four
patches as a square, and negative otherwise. This approach was tested on several WSI
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sets, achieving accuracies higher than 93%, an AUC higher than 91%, sensitivities higher
than 92% and specificities higher than 88%. Marini et al. [28] proposed a multi-scale task
multiple instance learning (MuSTMIL) method to classify five colon-tissue findings: normal
glands, hyperplastic polyps, low-grade displasias, high-grade displasias and carcinomas.
Using multiple scale branches, in a multi-task network, the model combines features from
several magnification levels of a slide in a global prediction. This method reached an
ACC of 87.0% and a 0.893 F1-score, in the binary setup, and an ACC of 85.7% and 0.682
F1-score, in the multi-class setup. More recently, Ho et al. [29] presented an algorithm that
simultaneously segments glands, detects tumour areas and sorts the slides into low-risk
(benign, inflammation or reactive changes) and high-risk (adenocarcinoma or dysplasia)
categories. The authors proposed a Faster-RCNN architecture, with a ResNet-101 backbone
network, for glandular segmentation of tiles, followed by a gradient-boosted decision tree
for slide classification, using features such as the total area classified as adenocarcinoma
or dysplasia, and the average prediction certainty for these areas. The model achieved an
ACC of 79.3% with an AUC of 0.917, a sensitivity of 97.4% and a specificity of 60.3%.

The main goal of this work was to develop a system that is one step closer to being used
by pathologists in their daily routine, which includes the following contributions: (1) an
improved method that combines weakly and supervised learning methods to construct a
novel system to diagnose CRC from digitised Haematoxylin-Eosin (H&E) stained slides,
with high ACC and sensitivity; (2) a thorough comparison of several aggregation methods
to increase the number of tiles used for predictions, which can reduce the number of
false positives; (3) extensive experiments on an extended version of the publicly available
CRC dataset; (4) a study of the model’s interpretability and capability to self-explain the
diagnosis areas through the reconstruction of the slide with individual tile predictions
without requiring added training. This latter contribution can be especially useful to guide
pathologists’ attention towards the most relevant tissue areas within each WSI; and (5)
evaluation of domain generalisation on two public colorectal WSI datasets (samples from
the TCGA [30–32] repository and from the PAIP colorectal cohort [33]).

Besides this introduction, this paper consists of two more sections, followed by the
conclusion, in Section 5. Section 2 includes the proposed methodology and a description of
the datasets used. Then, the details and results of the conducted experiments are presented
and discussed in Section 3.

2. Materials and Methods

2.1. Data Pre-Processing

The H&E slide pre-processing includes an automatic tissue segmentation with Otsu’s
thresholding [34] on the saturation (S) channel of the HSV colour space, obtaining the
tissue regions clearly separated from the whitish background. This step, performed on
the 32× downsampled slide, returned the mask used for tile extraction. Tiles with size
of 512 × 512 pixels (Figure 1) were then extracted from the slide with original dimensions
(without downsampling) at the maximum magnification (40×), provided they were com-
pletely within Otsu’s mask (100% tissue threshold). The tile size was chosen by empirical
experiments, which showed that 512 × 512 is the best trade off between memory and
performance. Larger sizes represent more context and tissue per tile, at the expense of
memory and computation time. The threshold of 100% reduces the number of tiles by
not including the tissue at the edges, which drastically decreases the computational cost,
without hurting the performance of the model. Since the original size of each WSI and the
amount of tissue per slide varies greatly, the number of tiles extracted also varies a lot.
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(a) (b) (c)

Figure 1. Examples of tiles with 512 × 512 pixels (40× magnification), representing each class:

non-neoplastic (a), low-grade dysplasia (b) and high-grade dysplasia (c).

2.2. Problem Definition

Automated diagnosis of colorectal cancer histological samples requires the use of
images with large dimensions. In addition, the labelling of these images is difficult, ex-
pensive, and tedious. Therefore, the availability of WSIs is limited, and, when available,
they often lack meaningful labelling: while slide-level diagnoses are generally available,
detailed spatial annotations are almost always lacking. A prototypical example is the CRC
dataset [17], containing 1133 colorectal H&E samples with slide-level diagnoses.

Thus, following previous work on CRC diagnosis, and on automatic diagnostic sys-
tems in general, we assumed a semi-supervised learning procedure. A slide S can be
viewed as a set of tiles Ts,n, where s is the index of the slide and n ∈ {1, · · · , ns} is the tile
number. We assumed that there were individual labels Cs,n ∈ {C(1), · · · , C(K)} for the tiles
within the slide. The classes C(k) were considered ordered and correspond to the different
diagnostic grades. For a strongly annotated slide, each corresponding tile label Cs,n is
known. In a weakly annotated slide, there is no access to those labels and they remain
unknown during training. A weakly annotated slide has only a single label for the entire
set (bag) of tiles, see Figure 2. Finally, we assumed that the slide label Cs is the worst-case
of the tile labels:

Cs = max
n

{Cs,n}.

If there is one tile in the set of tiles extracted from a slide that is classified as high-grade
dysplasia, then the slide label will be the same. Second, if there is no dysplasia in any of the
tiles, then the slide label is non-neoplastic. This learning setting corresponds to a simple
generalisation of multiple-instance learning (MIL), from the binary problem to the ordinal
classification problem.

Figure 2. Labelling scheme: weakly annotated slides (above) have only a global label, from the

pathology report, whereas a strongly annotated slide (below) has labels for each individual tile,

retrieved directly from the pathologists’ spatial annotations.
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2.3. Model Architecture

With the CRC dataset, Oliveira et al. [17] presented an approach that has already
introduced some modifications to the MIL method presented by Campanella et al. [14]. We
further extended those modifications and adjusted them to better fit the requirements of an
automatic CRC diagnosis system. In Figure 3, the architecture of our system is introduced,
which is mainly composed of a supervised pre-training phase, to leverage the samples
that include annotations (≈9% in the adopted dataset), a weakly supervised training
phase, where all the dataset is used, and a final stage that includes feature extraction and
training of an aggregation method. While supervised learning requires extensive use of
annotations, we followed an approach that merges weakly and supervised learning, and
uses less than one annotated sample per ten non-samples, while performing on par with
the state-of-the-art methods.

Figure 3. Proposed workflow for colorectal cancer diagnosis on whole-slide images, as a three-step

method: (1) supervised tile classifier, using the annotated slides set; (2) weakly supervised tile

classifier (initialised with the supervised weights), selecting the most relevant tiles by ranking by

the expected values; and (3) whole-slide prediction by aggregating the features (obtained with the

previous CNN model) extracted from the most relevant tiles.

2.3.1. Supervised Pre-Training

The supervised training phase leverages the annotations of all tiles in the strongly
annotated WSIs to train a ResNet-34 [35], which classifies into the three diagnostic classes by
minimising a loss function based on the quadratic weighted kappa (QWK). The QWK loss
is appropriate for ordinal data because it weights misclassifications differently, according
to the equation:

κ = 1 −
∑

n
i,j=1 wijxij

∑
n
i,j=1 wijmij

(1)

where K is the number of classes, wij belongs to the weight matrix, xij belongs to the
observed matrix and mij are elements in the expected matrices. The n × n matrix of weights
w is computed based on the difference between the actual and predicted class, as follows:

wi,j =
(i − j)2

(n − 1)2
(2)

As shown by Oliveira et al. [17], pre-training on a small set of data with supervised
learning leads to faster convergence and also better results on all metrics.

During our studies, we found that the approach followed by Oliveira et al. [17], used
as baseline, could be improved with increased pre-training. Compared to the weakly
supervised training phase, the supervised training was significantly faster to complete
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an epoch. In addition, thus, with a trivial computational cost, it was possible to increase
the number of pre-training epochs from two to five. This change positively impacted the
algorithm’s performance on test set.

2.3.2. Weakly Supervised Training

The weakly supervised training phase uses all the available training slides and only
slide-level labels to complete the training of the deep network. The model is used to infer
all tiles classes and then, based on those predictions, the tiles are ranked. We followed the
approach of Oliveira et al. [17], which performed a tile ranking based on the expected value
of the predictions.

For tile Ts,n, the expected value of the score is defined as

E(Ĉs,n) =
K

∑
i=1

i × p
(

Ĉs,n = C(i)
)

(3)

where Ĉs,n is a random variable on the set of possible class labels {C(1), · · · , C(K)} and

p
(

Ĉs,n = C(i)
)

are the K output values of the neural network.

Despite the ranking of all tiles, only the worst tile (from a clinical point of view), i.e.,
the one with the highest expected value, was used to optimise the weights of the network.
From the perspective of MIL, this corresponds to an aggregation function based on the
maximum of the observations of the bag. This can slow down the training and even make
it more unstable, especially in the first epochs, when the tile predictions are still very noisy.
Therefore, instead of using only the tile with the highest expected value, we considered
the generalisation of max function, topL(.), which keeps the first L tiles with the highest
score. By changing the number of tiles used to optimise the network, we also increased the
variability and possible changes between epochs. For example, it is more likely that none
of the selected tiles will change if only one is selected. However, by selecting L > 1, we
increased the probability that the tiles will change in successive epochs while maintaining
the stability of the training. Similar to the previous change, this one also resulted in a more
robust model compared to the baseline.

After the model’s performance with the one tile MIL aggregation (L = 1), and also
after an in-depth analysis with pathologists, we decided that the WSI on the adopted
dataset contained, on average, enough information to use at least five tiles. The definition
of sufficient information was determined by the number of tiles that contained information
related to the slide diagnosis. For instance, if a WSI label was from a high-grade dysplasia,
only tiles with information of a possible high-grade dysplasia were considered to be useful,
and, thus, tiles with only normal tissue should not be used to optimise the network weights.
The value of L was then set to L = 5, since this value represents a significant increase from
L = 1 and it does not use (in the majority of the slides) tiles with a potentially distinct
diagnosis from the slide diagnosis.

There is growing concern regarding semi-supervised methods’ overconfident be-
haviour. There have also been works that aimed at addressing this problem on other tasks
through network calibration [36]. However, in this specific scenario, it is believed that
an over-confident model on the severe cases leads to fewer false negatives and higher
sensitivity. In addition, thus, it is not seen as a potential problem of the model. On the other
hand, the proposed aggregation approaches in the following section show properties that
mitigate the risk of overconfidence.

2.3.3. Feature Extraction and Aggregation

Regarding the max-pooling aggregation on multiple-instance learning approaches,
one can argue about its robustness, such as the discussion presented, for example, by
Campanella et al. [14], since it is a biased aggregation towards positive labels, and one
small change can impact the entire tile classification. Hence, we studied the incorporation of
shallow aggregation structures into our model to improve the results given by max-pooling.
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It was found that the use of only one tile leads to a bias of the network towards more
aggressive predictions. For this reason, we followed a strategy that has been adopted
in other domains: the CNN was trained end-to-end as a classification model (using a
combination of supervised pre-training and weakly supervised learning) and, after training,
the fully-connected layer was removed. The network then output a feature vector for each
tile, which were aggregated and used to train a supervised method at the slide-level to
improve the classification capabilities of the system. For this problem, we chose to use La

feature vectors, corresponding to the La tiles with the highest expected value for the score
(Equation (3)). In our experimental study, La was empirically set to 7, which represents a
good trade off between additional information and the introduction of noise.

In order to compare different classifiers, we selected six aggregation models to test in
our system:

• A support-vector machine (SVM) with a radial basis function kernel and a C of 1.0;
• A K-nearest neighbour (KNN) with a K equal to 5;
• A random forest (RF) with a max. depth of 4 and the Gini criterion;
• AdaBoost and XGBoost with 3000 and 5000 estimators, respectively;
• Two distinct multi-layer perceptrons (MLP) with two layers; the first MLP with layers

of 75 and 5 nodes—MLP(75;5)—and a second one with layers of 300 and 50 nodes—
MLP(300;50).

Besides these individual models, we also combined the previous ones into voting
schemes, following a soft voting technique based on the probabilities of each model: SVM
and KNN; and SVM, RF and KNN.

2.3.4. Interpretability Assessment

Nowadays, deep learning models are becoming more complex and opaque. This is
alarming, especially when we look at the potential applications of these models in the
medical domain. If they are designed to work all by themselves, we need to ensure they
are completely transparent. In addition, if they are to be used as a tool to help pathologists
make a particular diagnosis and improve their confidence, then they must at least direct
their focus to the areas relevant to the diagnosis.

It is necessary to understand the behaviour of the model in order to extend the validity
of the typical analysis supported in metrics such as ACC, QWK and sensitivity. Therefore, a
method was developed to generate visual explanations of model predictions. This method
was constructed with the following ideas in mind: (a) for large WSI images, it is helpful to
direct the pathologist to specific areas of high relevance; (b) since the model was not trained
on tile ACC, it is sufficient if it is able to highlight a subset of the relevant tiles in a given
area of interest; and (c) since, for the slide prediction, the model requires the processing of
all tiles, creating a map of tile predictions does not require additional computational cost or
idle time for the pathologist.

Given these ideas, the proposed method leverages the evaluation of the MIL method,
which processes every tile in the WSI. Even if the tile is not selected for aggregation, it
will be processed by the backbone network, which results in a tile-score prediction (c).
These tile-level predictions are converted into colours based on the result of the Argmax
function applied to their scores. Afterwards, these colours can be spatially allocated based
on a remapping strategy from the tile at the original slide magnification to a 32× reduced
WSI (a). In addition, while some of the predictions might be misclassified, the entire
reconstruction of the WSI shall be sufficient to redirect the attention of pathologist towards
the areas of interest (b).

2.4. Datasets

One of the datasets used in this work consists of 1133 colorectal biopsy and polypec-
tomy slides (example in Figure 4a), from the recent and publicly available CRC dataset [17].
All samples are labelled within three categories: non-neoplastic (NNeo), low-grade lesions
(LG), and high-grade lesions (HG).
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(a) (b)

Figure 4. Example of a WSI (a), with manual segmentations overlayed (b). Tissue regions are

annotated as non-neoplastic (green), low-grade (blue) or high-grade (yellow).

The NNeo category includes normal colorectal mucosa, non-specific inflammation and
hyperplasia. LG lesions correspond to conventional adenomas with low-grade dysplasia.
HG lesions consist of conventional adenomas with high-grade dysplasia (including intra-
mucosal carcinomas) and invasive adenocarcinomas. The dataset does not include either
slides with suspicion of/known history of inflammatory bowel disease/infection, or any
serrated lesions or other polyp types.

All slides were retrieved from the lab archive and digitised with Leica GT450 WSI
scanners, at 40× magnification. Then, the slides were assessed by one of two pathologists
and, when the diagnosis was different from the initial report, the case was rechecked and
decided between the two. From the entire set, a small number of slides (n = 100) were also
manually annotated (like the example in Figure 4b) by one of the pathologists and then
rechecked by the other, using the Sedeen Viewer software [37]. For complex cases, or when
an agreement could not be reached, a third pathologist reevaluated both the label and/or
annotation.

This work also evaluated the proposed methodology with a second dataset (CRC+),
which is an extended version of the one proposed by Oliveira et al. [17], with approximately
4× more samples (4433 colorectal H&E slides), of which a subset (n = 400) is annotated
according to the guidelines followed on the original one [17,38]. The CRC dataset was
still used for the selection and comparison of aggregation methods. The CRC+ was used
to create a more robust test set and a larger training set to train the methods previously
selected. Table 1 summarises the class distribution of annotated and non-annotated data,
including the number of tiles obtained after the pre-processing described in Section 2.1.

Table 1. CRC dataset summary, with the number of slides (annotated samples are detailed in

parenthesis) and tiles distributed by class.

NNeo LG HG Total

# slides 300 (6) 552 (35) 281 (59) 1133 (100)
CRC dataset [17] # annotated tiles 49,640 77,946 83,649 211,235

# non-annotated tiles - - - 1,111,361

# slides 663 (12) 2394 (207) 1376 (181) 4433 (400)
CRC+ dataset # annotated tiles 145,898 196,116 163,603 505,617

# non-annotated tiles - - - 5,265,362

The CRC+ dataset represented an increase in the approximate average number of
non-annotated tiles per slide from 1075 to 1305. However, the approximate average number
of tiles per annotated slide decreased from 2112 to 1264. This might represent a tougher
task to solve on this dataset.

Two external datasets were also included for a domain generalisation evaluation. The
first is composed by samples of the TCGA-COAD [30] and TCGA-READ [31] collections
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from The Cancer Imaging Archive [32], containing mostly surgical resection samples,
excluding slides with pen markers, large air bubbles over tissue, tissue folds and other
artefacts in large areas of the slide. We ended up with 232 samples reviewed and validated
by the pathologist team, from which 230 of them were diagnosed as high-grade lesions,
one as a low-grade lesion and one as non-neoplastic. The second external validation set is
composed of 100 H&E slides from the Pathology AI Platform [33] colorectal cohort, which
includes all the cases with more superficial sampling of the lesion, to better compare with
our CRC+ dataset. All samples were also reviewed and validated as high-grade lesions by
the pathologist team.

2.5. Training Details

We trained the convolutional neural network using Pytorch with the Adaptive Moment
Estimation (Adam) optimiser, a learning rate of 6 × 10−6, a weight decay of 3 × 10−4 and
a batch size of 32, for both the strongly and weakly supervised training steps. For the
inference step in the weakly supervised approach, we used a batch size of 256 and the
network was set to evaluation mode. The performance of the method was evaluated at the
end of each epoch to select the best model based on the QWK. The training was conducted
on a single Nvidia Tesla V100 (32 GB) GPU for 5 strongly supervised epochs and 30 weakly
supervised epochs.

Seven feature vectors from the worst tiles were concatenated to train the aggregation
methods. This led to a feature vector of size 3584. Afterwards, these feature vectors were
used as input to train the aggregators developed with the help of the scikit-Learn library.
In addition to this, the MLP aggregator required additional training parameters. It was
optimised with stochastic gradient descent, mini-batches of 32 samples and an initial
learning rate of 10−3.

3. Results

Due to the limited number of studies published on CRC diagnosis using DL methods
and WSI, there are also a limited number of results comparable to ours. Thus, we decided
to conduct our evaluation process in four different steps. First, we performed a quantitative
evaluation of the aggregation methods and compared the results with Oliveira et al. [17], in
Section 3.1. Then, we extended the dataset to a larger version with a total of 4433 samples,
where we evaluated the top-performing aggregation methods and the baseline in Section 3.2.
Afterwards, as in Section 4.1, we performed a qualitative assessment from an interpretability
perspective: we retrieved a mapping of the tiles classification over the original image.
Finally, we evaluated our method on two external datasets, as in Section 3.3.

3.1. Original CRC Dataset Evaluation

We evaluated our approach with the MIL-aggregation (max-pooling) and with eight
different types of aggregators, as seen in Table 2. Approaches with tile aggregation at
inference are, in general, better than the baseline method for CRC diagnosis from WSI.
From those, the MLP aggregator using seven feature vectors outperformed the baseline
and all the others aggregation schemes. Other approaches with aggregation showed
overall good results, but are not on par with the MLP approach. In addition, the MLP
has an increased specificity (by reducing the number of false positives) while avoiding a
significant degradation of the sensitivity. The SVM and the K-NN have the best results from
the remaining approaches, with the K-NN achieving the same specificity as MLP. Finally,
the two voting approaches show notable improvements over the stand-alone aggregation
methods, with the combination of SVM and KNN beating all the previous approaches on
nearly every metric and achieving the same specificity of the MLP.

In Table 3 we can see the confusion matrix for the MLP (75;5), which was the best-
performing method. It is worth noting that MLP (75;5) did not fail any prediction by
more than one consecutive class (for instance, predicting HG as NNeo or vice-versa). This
ensures that HG lesions are at least classified as LG or HG, which can be seen a desired
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feature of the model. When analysed as a binary classification problem, it is possible to
observe that only 5 samples out of 259 are misclassified. This means that the proposed
model shows a binary ACC of 98.1%.

Table 2. Comparison of feature aggregation methods against the approach of Oliveira et al. [17], on

the same test set. Both the ACC and the QWK score were computed for a three-classes problem,

whereas the sensitivity and the specificity were computed for a binary problem by considering the

LG and HG classes as an unique class. In bold are the best results per column.

Method
Annotated
Samples

Training
Tiles (L)

Aggregation
Tiles (La)

QWK ACC Sensitivity Specificity

Oliveira et al. 0 1 1 0.795 84.17% 0.933 -
Oliveira et al. 100 1 1 0.863 88.42% 0.957 -

Supervised baseline 100 - 1 0.027 29.73% 0.449 0.796
Max-pooling 100 5 1 0.881 91.12% 0.990 0.852

MLP (75;5) 0.906 91.89% 0.980 0.981
SVM 0.887 90.35% 0.971 0.944
KNN 0.890 90.35% 0.971 0.981
RF 0.878 89.57% 0.966 0.963
AdaBoost 0.862 88.03% 0.961 0.907
XGBoost

100 5 7

0.879 89.58% 0.961 0.963

SVM + KNN 100 5 7 0.898 91.12% 0.971 0.981
SVM + RF + KNN 100 5 7 0.893 90.73% 0.971 0.981

Table 3. Confusion matrix of the MLP (75;5) in the multiclass setup, using the CRC test set

(259 samples), with non-neoplastic (NNeo), low-grade (LG) and high-grade (HG) classes. In bold are

the best results per column.

Predicted

NNeo LG HG

NNeo 53 1 0

LG 4 137 2

A
ct

u
a

l

HG 0 14 48

We also plotted the receiver operating characteristic (ROC) curve of the baseline and
the best aggregation method. It was intended to verify not only their area under the curve
(AUC), but the performance of the model per class. Once more, as seen in Figure 5, the MLP
method outperformed the other approach in almost every class. Moreover, as expected, it
is easier to distinguish non-neoplastic cases from the rest, than to decide between low- and
high-grade lesions.

(a) Max-pooling (b) MLP (75;5)

Figure 5. ROC curves for max-pooling and MLP (75;5) aggregator.
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3.2. CRC+ Dataset Evaluation

We aimed to understand the relevance of adding additional annotated and non-
annotated data to the performance of the algorithm. Hence, the results in Table 4 show the
performance of the model with the original dataset, with increased annotated samples and
with an increased number of non-annotated samples. In addition, we further introduced
another version of the MLP aggregator, which comprises different layer dimensions, to
test if the increased number of samples required more complex models. Surprisingly, the
results did not evolve as expected, since the performance was negatively affected by the
increase in the size of the dataset. This is likely caused by the overfitting of the aggregation
method to the training data, which leads to a poor generalisation capability on test data.

Table 4. Model performance evaluation with increasing training sets and/or annotated samples (in

parenthesis). Both the ACC and the QWK score were computed for a three-classes problem, whereas

the sensitivity and the specificity were computed for a binary classification problem by considering

the LG and HG classes as one unique class. In bold are the best results per column.

Method
Training
Samples

Test
Samples

Aggregation
Tiles (La)

QWK Score ACC Sensitivity Specificity

Max-pooling 1 0.881 91.12% 0.990 0.852
MLP (75;5) 7 0.906 91.89% 0.980 0.981
MLP (300;50)

874 (100) 259
7 0.885 91.12% 0.966 0.981

Max-pooling 1 0.874 91.12% 0.985 0.907
MLP (75;5) 7 0.838 86.49% 0.946 0.926
MLP (300;50)

1174 (400) 259
7 0.850 87.26% 0.941 0.944

Max-pooling 1 0.834 89.96% 0.980 0.870
MLP (75;5) 7 0.810 83.78% 0.922 0.889
MLP (300;50)

4174 (400) 259
7 0.816 83.01% 0.927 0.926

Max-pooling 1 0.884 89.89% 0.992 0.815
MLP (75;5) 7 0.871 88.89% 0.982 0.839
MLP (300;50)

3424 (400) 1009
7 0.888 90.19% 0.988 0.857

In an attempt to fully understand the reason behind the performance drop, we created
new training and test sets, with the latter being roughly 3.89 times larger than its previous
version. The results of this new experiment are presented in the last three rows of Table 4.
The improvements shown by training and evaluating on these larger training and test sets
indicate that the smaller test set used for evaluation in Table 4 might have noisy labels or not
be representative enough. Hence, the proposed model seems to be robust when given more
training data and a larger test set. Finally, the superior performance of the aggregators on
the new dataset split shows its relevance to the construction of well-balanced and accurate
algorithms.

3.3. Domain Generalisation Evaluation

The development of medical-oriented deep neural networks is usually strongly in-
fluenced by the data source. Colour, saturation and image quality are important factors
for the performance of these networks. Moreover, the type of sample is also important;
for instance, despite the shared similarities, biopsies and surgical resection samples are
quite distinct from each other. Hence, to evaluate the domain generalisation, the proposed
method trained on CRC+ biopsies samples was evaluated on two external public datasets.
The results are presented in Tables 5 and 6.

As expected, due to its high sensitivity, and since almost all cases evaluated are high-
grade cases, the max-pooling approach achieves the best results in terms of multiclass
ACC, binary ACC and sensitivity. Regarding the TCGA dataset, these results can be
explained by the fact that these samples are mostly from surgical resections, with bigger
portions of tissue, whereas ours are from biopsies/polipectomies. Moreover, the datasets
are somewhat different regarding the represented classes, with TCGA containing more
poorly differentiated and mucinous adenocarcinomas, which are underrepresented in the
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CRC+ training set. Finally, the lower tissue image quality, when compared to the CRC+
dataset, may also explain this performance drop.

Table 5. Model performance evaluation on the TCGA test set. In bold are the best results per column.

Method ACC Binary ACC Sensitivity

Max-pooling 71.55% 80.60% 0.805
MLP (75;5) 61.20% 75.43% 0.753
MLP (300;50) 58.62% 74.13% 0.740

Table 6. Model performance evaluation on the PAIP test set. In bold are the best results per column.

Method ACC Binary ACC Sensitivity

Max-pooling 99.00% 100.00% 1.000
MLP (75;5) 77.00% 98.00% 0.980
MLP (300;50) 77.00% 98.00% 0.980

Regarding the better results on PAIP dataset, it can be explained by the better quality
of the WSIs and an H&E staining colour being closer to CRC+ dataset. Moreover, although
all PAIP slides seem to derive from surgical specimens, the sampling of the neoplasias was
more superficial in most of the cases used (representing mostly mucosa and submucosa
layers) as opposed to TCGA samples, in which many samples showcased all colonic layers
(mucosa, submucosa, muscular and adipose tissue), differing greatly from the biopsies and
polipectomies of the CRC+ dataset.

Domain generalisation is a complex topic that derives from several variables. In
our scenario, the model displays a good capability to comprehend the content of a WSI
collected on another lab, as seen in Table 6. However, there is still work to be done on
the generalisation capability between strong colour differences and the capability of also
assessing surgical specimens samples.

4. Discussion

4.1. Interpretability Assessment

In order to assess how the model classified each tile and to better understand the
class distribution within each case, we retrieved the single tile predictions and assigned
them to their respective position in the slide, creating a predictions map. For each case,
we also retrieved the worst tile (in clinical terms). This experiment was conducted with
slides from the annotated data subset (Figure 6) and further analysed by pathologists.
By constructing these maps, we allowed pathologists to understand the reasoning of the
model behind a slide prediction. Moreover, if necessary, it can guide and direct the focus
of the pathologist to relevant areas in order to improve the overall workflow in clinical
environments. As can be seen in the third column of Figure 6, although the model was
not trained for segmentation, nor focused on individual tile-label prediction, the results
are quite accurate in terms of lesion localisation, when compared to the ground truth
(second column of Figure 6). On slides classified as NNeo and LG, the precision of the tile
classification compared to the pathologists’ masks is rather impressive. For the HG slides,
despite the lower density of tiles predicted as HG, the model was capable of capturing
the majority of the fragments affected, as we verified on the maps generated for all the
annotated slides. Moreover, for the same samples, we also retrieved the maps produced
with the model trained on the full dataset (Figure 7). When compared with the previous
examples, we can conclude that the model maintains the capability of locating tumour
regions, especially in the high-grade example, without compromising the identification of
non-neoplastic or low-grade areas.
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(a) (b) (c) (d)

Figure 6. Examples of a model prediction map for each class, from the annotated data subset: a non-

neoplastic case (top), a low-grade lesion (middle) and a high-grade lesion (bottom). Each column

has the slides examples (a), the ground-truth annotation (b), the map with the tile predictions (c) and

the most relevant tile (512 × 512 px), with the worst clinical class (d). The non-neoplastic, low-grade

and high-grade regions are represented in green, blue and yellow, respectively.

(a) (b) (c) (d)

Figure 7. Examples of a model prediction map for each class, from the annotated data subset: a non-

neoplastic case (top), a low-grade lesion (middle) and a high-grade lesion (bottom). Each column

has the slides examples (a), the ground-truth annotation (b), the map with the tile predictions (c) and

the most relevant tile (512 × 512 px), with the worst clinical class (d). The non-neoplastic, low-grade

and high-grade regions are represented in green, blue and yellow, respectively.
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5. Conclusions

The method proposed in this document presents significant improvements over state-
of-the-art methods for colorectal cancer diagnosis. Not only are metrics such as ACC and
the QWK better, but the sensitivity achieves values close to the maximum of 1. Furthermore,
the method was trained and tested on an extended version of one of the largest datasets
of colorectal histological samples publicly available, which increases the robustness of
the test results and our trust in its metrics. Finally, the model was validated on external
datasets for domain generalisation. Despite the performance drop in the TCGA dataset,
when compared to CRC+ dataset, and some misclassifications in the PAIP dataset, it is
worth noting that the model can detect high-grade lesions reasonably well, even in sets
with many distinct properties compared to the one used for training.

Although achieving remarkable performance, medical applications of DL-based meth-
ods have been exposed to severe criticism due to its natural black-box structure. Here,
we presented a model that attempts to support slide decision reasoning in terms of the
spatial distribution of lesions. With this, we argue that our model is closer to being capable
of being integrated into clinical practice to assist and ease the workload of pathologists.
In addition to this interpretability analysis, we developed an aggregation system that is
state-of-the-art in classifying CRC from digitised H&E slides. Further efforts should be
devoted to bringing these methods closer to clinical applicability. From increased datasets,
to better standardisation techniques, the future is bright. However, digital pathology is a
young field, with much to improve over the following years.
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Abbreviations

The following abbreviations are used in this manuscript:

ACC Accuracy

AD Adenoma

Adam Adaptive moment estimation

ADC Adenocarcinoma

AI Artificial intelligence

AUC Area under the (ROC) curve

CNN Convolutional neural network

CRC Colorectal cancer

DL Deep learning

ESGE European Society of Gastrointestinal Endoscopy

GPU Graphics processing unit

H&E Haemotoxylin and eosin

HGD High-grade dysplasia

K-NN K-nearest neighbour

LGD Low-grade dysplasia

MIL Multiple instance learning

MLP Multilayer perceptron

NNeo Non-neoplastic

QWK Quadratic weighted kappa

RF Random forest

RNN Recurrent neural network

ROC Receiver operating characteristic

SVM Support vector machine

WSI Whole slide image(s)
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