
npj | precision oncology Article
Published in partnership with The Hormel Institute, University of Minnesota

https://doi.org/10.1038/s41698-024-00539-4

An interpretablemachine learning system
for colorectal cancer diagnosis from
pathology slides

Check for updates

Pedro C. Neto 1,2,8 , Diana Montezuma 3,4,5,8 , Sara P. Oliveira 1,2,8 , Domingos Oliveira3,
João Fraga6, Ana Monteiro3, João Monteiro3, Liliana Ribeiro 3, Sofia Gonçalves3, Stefan Reinhard 7,
Inti Zlobec7, Isabel M. Pinto3 & Jaime S. Cardoso 1,2

Considering theprofound transformation affecting pathologypractice,weaimed todevelop a scalable
artificial intelligence (AI) system to diagnose colorectal cancer fromwhole-slide images (WSI). For this,
wepropose adeep learning (DL) system that learns fromweak labels, a sampling strategy that reduces
the number of training samples by a factor of six without compromising performance, an approach to
leverage a small subset of fully annotated samples, and a prototype with explainable predictions,
active learning features and parallelisation. Noting some problems in the literature, this study is
conductedwith one of the largestWSI colorectal samples datasetwith approximately 10,500WSIs. Of
these samples, 900 are testing samples. Furthermore, the robustness of the proposed method is
assessed with two additional external datasets (TCGA and PAIP) and a dataset of samples collected
directly from the proposed prototype. Our proposed method predicts, for the patch-based tiles, a
class based on the severity of the dysplasia and uses that information to classify the whole slide. It is
trainedwith an interpretablemixed-supervision scheme to leverage thedomain knowledge introduced
by pathologists through spatial annotations. The mixed-supervision scheme allowed for an intelligent
sampling strategy effectively evaluated in several different scenarios without compromising the
performance. On the internal dataset, the method shows an accuracy of 93.44% and a sensitivity
between positive (low-grade and high-grade dysplasia) and non-neoplastic samples of 0.996. On the
external test samples variedwith TCGAbeing themost challenging datasetwith an overall accuracy of
84.91% and a sensitivity of 0.996.

Colorectal cancer (CRC) incidence and mortality are increasing, with pro-
jections indicating continued growth until at least 2040, according to esti-
mations of the International Agency for Research on Cancer1. Nowadays, it
is the third most incident (10.7% of all cancer diagnoses) and the second
most deadly type of cancer1. Despite the pessimist predictions, CRC is

preventable and curable when detected in its earlier stages. Thus, effective
screening through medical examination, imaging techniques and colono-
scopy are of utmost importance2,3. Notwithstanding the CRC detection
capabilities shownby imaging/endoscopic techniques, the definitediagnosis
of cancer is always based on the pathologist’s evaluation of the histological
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samples. The stratification of neoplasia development stages consists of non-
neoplastic (NNeo), low-gradedysplasia (LGD), high-gradedysplasia (HGD,
including intramucosal carcinomas), and invasive carcinomas, from the
initial to the latest stage of cancer progression, respectively. In spite of the
inherent subjectivity of thedysplasia grading system4, recent guidelines from
the European Society of Gastrointestinal Endoscopy, as well as those from
the US multi-society task force on CRC, consistently recommend shorter
surveillance intervals for patients with polyps with high-grade dysplasia,
regardless of their dimension3,5. Hence, grading dysplasia is still routinely
performed by pathologists worldwide when assessing colorectal tissue
samples.

Private datasets of digitised slides are becoming widely available, in the
formofwhole-slide images (WSI),with an increase in the adoptionof digital
workflows6–8. WSI eases the revision of old cases, data sharing and peer-
review9,10. It has also created several research opportunities within the
computer vision domain, especially due to the complexity of the problem
and the high dimensions of WSIs11–14. Robust and high-performance sys-
tems can be valuable assets to the digital workflow of a laboratory, especially
if they are transparent and interpretable9,10. However, some limitations still
affect the applicability of such solutions into practice15.

The analysis of CRC samples from WSI is divided into two different
branches: classification of regions of interest, and classification of WSI. On
the latter topic, despite the limitations, researchers have been improving the
state of the art on the classification of the slide from individual tile classi-
fication, or aggregationmethods15–18. In 2020, ref. 19 used a recurrent neural
network to aggregate the predictions of individual tiles processed by an
Inception-v3 network into non-neoplastic, adenoma (AD) and adeno-
carcinoma (ADC). Due to the large dimensions of WSI related to their
pyramidal format (with several magnification levels)20, usually over
50,000 × 50,000 pixels, it is usual to use a scheme consisting of a grid of tiles.
This scheme permits the acceleration of the processing steps since the tiles
are small enough to fit in the memory of the graphics processing units
(GPU), popular units for the training of deep learning (DL). Reference 21
studied theusage of an ensembleoffivedistinctResNetnetworks, inorder to
distinguish the types of CRC adenomas H&E stained slides. Reference 22
experimented with a modified DeepLab-v2 network for tile classification,
and proposed pixel probability thresholding to detect CRC adenomas. Both
refs. 23–25 looked into the performance of the Inception-v3 architecture to
detect CRC, with the latter also retrieving a cluster-based slide classification
and a map of predictions. The MuSTMIL26 method classifies five colon-
tissue findings: normal glands, hyperplastic polyps, low-grade dysplasias,
high-grade dysplasias and carcinomas. This classification originates from a

multitask architecture that leverages several levels ofmagnificationof a slide.
Reference 27 extended the experiments withmultitask learning, but instead
of leveraging the magnification, its model aims to jointly segment glands,
detect tumour areas and sort the slides into low-risk (benign, inflammation
or reactive changes) and high-risk (adenocarcinoma or dysplasia) cate-
gories. The architecture of this model is considerably more complex, with
regard to the number of parameters, and is known as Faster-RCNN with a
ResNet-101 backbone network for the segmentation task. Further to this
task, a gradient-boosted decision tree completes the pipeline that results in
the final grade. More recently, ref. 28 presented an DL-based method to
segment multiple colorectal tissue compartments and then used the best
performingmodel classify biopsies as either (1) high-risk (tumour andhigh-
grade dysplasia), (2) low-grade dysplasia, (3) hyperplasia and (4) benign;
achieving an one-vs-all AUC of 0.87 for the high-risk category. Notably,
ref. 29 have developed a graph neural network, Interpretable Gland-Graphs
using a Neural Aggregator (IGUANA), to distinguish colorectal samples in
normal vs. abnormal (non-neoplastic andneoplastic), achieving a sensitivity
threshold of 99%, proposing, with their model, to reduce the number of
normal slides to be reviewed by pathologists by 55%.

Our work aims to further contribute to the landscape of computer-
aided diagnosis (CAD) systems for colorectal pathology, addressing current
hurdles and limitations: - Thehigh volumeof data needed, in addition to the
massive resolution of the images, creates a significant bottleneck of DL
approaches that extract patches from the whole slides. Hence, we introduce
an efficient sampling approach that is performed once without sacrificing
predictive performance on the classification. Leveraging the domain
knowledge introduced in the data, by the expert pathologists, in the form of
annotations at the pixel level, the model is capable of predicting pseudo-
labels for the non-annotated samples. Leveraging these new pseudo-labels,
we can discard tiles with the least meaningful pseudo-labels, resulting in
6 × less tileswhile retainingmost of the important information.This process
is preceded by a supervised learning step using the pixel level annotations
where the model learns how to create the pseudo-labels for the sampling
step.After, the sampling is followedby aweakly-supervisedapproachon the
reduced set of slides and using only slide labels. Our dataset contains,
approximately, 10,500 high-quality slides from IMP Diagnostics. A large
part of this dataset is publicly available30, with corresponding case diagnostic
labels (making it one of the largest colorectal samples (CRS) datasets
available to date).We validate our proposedmodel in two different external
datasets that vary in quality, country of origin and laboratory, ensuring its
generalisation capability and robustness. Importantly, in order to bring this
CAD system into production, and to infer its usefulness within clinical
practice, we developed a prototype, with explainable predictions (visual
maps), that was tested and evaluated by pathologists.

To summarise, in this paperwepropose anovel datasetwithmore than
thirteen million tiles, a sampling approach to reduce the difficulty of using
large datasets, an accurate DLmodel that is trained withmixed supervision,
is evaluated on four datasets, and finally incorporated in a prototype that
provides a simple integration in clinical practice and visual explanations of
themodel’s predictions. This way, we are a step closer tomaking CAD tools
a reality for colorectal diagnosis.

Results
In this section, the results are organised tofirst demonstrate the effectiveness
of sampling, followed by an evaluation of the model in the two internal
datasets (CRS10K and the prototype dataset), and in the external datasets.

On the effectiveness of sampling
To find themost suitable threshold for sampling the tiles used in the weakly
supervised training, we evaluated the percentage of relevant tiles that would
be left out of the selection, if the original set was reduced to 75, 100, 150 or
200 tiles, over the first five inference epochs. A tile is considered relevant if it
shares the same label as the slide, or if it would take part in the learning
process in the weakly-supervised stage. As it is possible to see in Fig. 1, if we
set the maximum number of tiles to 200 after the second loop of inference,

Fig. 1 | Tile sampling impact on information loss. Percentage of tiles not selected
due to sampling with different thresholds, over the first four inference epochs. The
blue bar represents a sampling strategy that retains 200 tiles per slide, the orange bar
is for a strategy that retains 100 tiles, the green bar represents a strategy that retains
75 tiles and finally the strategy represented by the red line retains 50 tiles per slide.
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wewould discard only 3.5%of the potentially informative tiles, in theworst-
case scenario. On the other side of the spectrum, amore radical sampling of
only 50 tiles would lead to a cut of up to 8%.

Moreover, to assess the impact of this sampling on the model’s per-
formance, we also evaluated the accuracy and the QWK with and without
sampling the top 200 tiles after the first inference iteration (Table 1). This
evaluation considered sampling applied only to the training tile set, and to
both the training and validation tile sets. As can be noticed, the performance
is not degraded and themodel is trained in amuch faster way. In fact, using
the setup previouslymentioned, the first epoch of inference, with the full set
of tiles takes 28h to be completed, while from the second loop the training
time decreases to only 5h per epoch. Without sampling, training the model
for 50 epochs would take around 50 days, whereas with sampling it takes
around 10.

CRS10K and prototype
CRS10K test set and the prototype dataset were collected through different
procedures. The first followed the same data collection process as the
complete dataset, whereas the second originated from routine samples.
Thus, the evaluation of both these sets is done separately.

The first experiment was conducted on the CRS10K test set. As
expected, the steep increase in the number of training samples led to a
significantly better algorithm in this test set. Initially, the model trained on

the CRS10K correctly predicted the class of 819 out of 900 samples. For the
wrong 81 cases, the pathologists performed a blind review and found that
the algorithm was indeed correct in 22 of them. This led to a correction in
the labels of the test set, and the appropriate adjustment of the metrics. In
Table 2, the performance of the different algorithms is presented. CRS10K
outperforms the other approaches by a reasonable margin.

Using the McNemar’s test, it was shown that there were significant
different performances between the proposed model trained on CRS10K
data and themodel trained onCRS4Kwith a p value of 0.008 (Table 3). The
differences between the proposedmethods trained onCSR10KandCSR4K,
and iMIL4Path are not statistically significant with p value of 0.166 and
0.177 respectively.We further applied the aggregationproposedby ref. 31 to
the proposed method trained on CRS10K, but without gains in perfor-
mance. Despite being trained on the same dataset, iMIL4Path and the
proposed methodology trained on CRS4K, they utilise different splits for
training and validation, as well as different optimisation techniques due to
the deterministic approach.

A more in-depth inspection of the performance considering the dif-
ferent errors is shown in Fig. 2, where the precision-recall curves for the
three models is shown. Moreover, the F1-Score is also included, which
shows that the most balanced model is the one that we proposed.

In addition to examining quantitative metrics, such as the accuracy of
themodel, we extended our study to include an analysis of the confidence in
the model when it correctly predicts a class and when it makes an incorrect
prediction. To this end, we recorded the confidence of the model for the
predicted class and divided it into the set of correct and incorrect predic-
tions. These were then used to fit a kernel density estimator. Figure 3 shows
the density estimation of the confidence values for the three different
models. It is worth noting that, when correct, the model trained on the
CRS10K, returns higher confidence levels as shown by the shift of its mean
towards values close to one. On the other hand, the confidence values of its
incorrect predictions decrease significantly, and although it does not present
the lowest values, it shows the largest gap between correct and incor-
rect means.

When tested on the prototype data (n = 100), the importance of a
higher volume of data remains visible (Table 4). Nonetheless, the perfor-
mance of iMIL4Path31 approach is comparable to the proposed approach
trained on CRS10K. It is worth noting that the latter achieves better per-
formance on the binary accuracy at the cost of a decrease in sensitivity. In
other words, the capability to detect negatives increases significantly.

The McNemar’s test did show significant differences between any of
the methods (Table 5). Similar performance drops were linked with the
introduction of aggregation.

Despite similar results, the confidence of themodel in its predictions is
distinct in all three approaches, as seen in Fig. 4. The proposed approach
when trained on the CRS10K dataset has a larger density on values close to
one when the predictions are correct, and the mean confidence of those
predictions is, once more, higher than the other approaches. However,
especially when compared to the proposed approach trained on the CRS4K,
the confidence of wrong predictions is also higher. It can be a result of a
larger set ofwrongpredictions available on the latter approach.Nonetheless,
the steep increase in the density of values closer to one further indicates that
there is room to explore other effects of extending the number of training
samples, besides benefits in quantitative metrics.

Domain generalisation evaluation
To ensure the generalisation of the proposed approach across external
datasets, we have evaluated their performance onTCGAandPAIP datasets.
Moreover, we conducted a similar analysis to both of these datasets, as the
one done for the internal datasets.

From the two datasets, PAIP is arguably the closest to CRS10K. It
contains similar tissue, despite its colour differences. The performances of
the proposed approaches were expected to match the performance of
iMIL4Path in thisdataset.However, it didnothappenfor the version trained
on the CRS4K dataset, as seen in Table 6. A possible explanation concerns

Table 1 | Model performance comparisonwith andwithout tile
sampling of the top 200 tiles from the first inference iteration

Sampling Best ACC at
5th epoch

Best ACC at
10th epoch

Best QWK at
5th epoch

Best QWK at
10th epoch

No 84.94% ± 2.20 86.42% ± 2.11 0.809 ± 0.024 0.829 ± 0.023

Train 85.43% ± 2.18 86.82% ± 2.08 0.817 ± 0.024 0.828 ± 0.023

Train
and Val.

86.12%± 2.13 86.92%± 2.08 0.824 ± 0.023 0.829 ± 0.023

Compared the best epoch of the initial five epochs and of the initial ten epochs. Validation is
represented as Val and the best results are in bold.

Table 2 | Model performance evaluation on the CRS10K
test set

Method ACC Binary ACC Sensitivity

iMIL4Path 91.33% ± 1.84 97.00% ± 1.11 0.997 ± 0.004

Ours (CRS4K) 89.44% ± 2.01 96.11% ± 1.26 0.997 ± 0.004

Ours (CRS10K)
wo/ Agg

93.44%± 1.62 97.78%± 0.96 0.996 ± 0.005

Ours (CRS10K)
w/ Agg

90.67% ± 1.90 97.55% ± 1.01 0.985 ± 0.009

The binary accuracy is calculated as NNeo vs all. Accuracy is represented as (ACC). In bold are the
best results per column.

Table 3 |X2 and p value computed using the McNemar’s test
for the models evaluated on the Test set

Method iMIL4Path Ours (CRS4K) Ours (CRS10K)
wo/ Agg

iMIL4Path – 1.82 (0.177) 1.92 (0.166)

Ours (CRS4K) 1.82 (0.177) – 6.94 (0.008)

Ours (CRS10K)
wo/ Agg

1.92 (0.166) 6.94 (0.008) –

IfX2 is > than 3.84 the differencebetween twomethods is statistically significant. These statistically
significant differences are highlighted in bold. P value, under parentheses, is computed by calcu-
lating the area under the PDF of the chi squared distribution to the right of X2.
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potential overfitting to the training data potentiated by an increase in the
number of epochs of fully and weakly supervised training, a slight decrease
in the tile variability in the latter approach, and a smaller number of samples
when compared to the version trained on CRS10K. This version, trained on
the larger set,mitigates theproblemsof the othermethoddue to a significant
increase in the training samples.Moreover, it isworthnoting that in all three
approaches, the errors corresponded only to a divergence between low and
high-grade cases,withnonon-neoplastic casesbeing classified as high-grade
or vice-versa. As in previous sets, the version trained on theCRS10Kdataset
outperforms the remaining approaches. Using aggregation in this dataset
leads to a discriminative power to distinguish between high- and low-grade
lesions that is close to random.

The McNemar’s test indicated a significant difference in the perfor-
mance difference between the model trained on CRS10K and the one

trained on the CRS4k (p value of 0.00), and between the latter and iMI-
L4Path (p value of 0.00). However, there was no significant difference
between iMIL4Path and the former with a p value of 1.00 (Table 7) The
confidence of themodel was also calculated for this dataset (Supplementary
Fig. 2), showing a visible shift towards higher values of confidence in the
proposed approach trained on the CRS10K when compared to the method
of iMIL4Path. The version trained onCRS4K showed very little separability
between the confidence of correct and incorrect predictions.

TheTCGAdataset has established itself as themost challenging for the
proposed approaches. Besides the expected differences in colour and other
elements, this dataset is mostly composed of resection samples, which are
not present in the training dataset. As such, this presents itself as an excellent
dataset to assess the capability of themodel to handle these different types of
samples. Both iMIL4Path and the proposedmethod trained onCRS4Khave

Fig. 3 | Confidence analysis for correct and incorrect predictions on the CRS10K
test set. Kernel density estimation of the confidences of correct and incorrect pre-
dictions performed on the three-class classification problem by three distinctmodels
on the CRS10K test set. The plots represent, from left to right, the proposed method

trained on CRS10K, the proposed method trained on CRS4K and iMIL4Path. In
each plot, the blue line defines the density function of the correct samples and the
blue dashed line the mean confidence of those samples. On the other hand, the
orange solid and dashed lines represent the same for incorrect predictions.

Fig. 2 | Precision-recall curve on the on the CRS10K test set. For the three distinct
models, we have calculated the Precision-recall curve on this dataset. Includes an
indication of the F1-Score for each of the different models. The blue line represents

the curve of Our method when trained on CRS10K, while the orange line shows the
same method when trained on CRS4K. The green line is the curve of iMIL4Path.
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shown substantial problems in correctly classifying TCGA slides, as shown
in Table 8. This can be explained as in the TCGAdataset themajority of the
high-grade lesions exhibit an invasive component, and the morphology of
the tumoral lesions is altered with the invasiveness. Also, features like an
abundance of desmoplastic stroma tend to manifest more prominently in
the deeper regions of the tumour, as opposed to the superficial sections
typically obtained through biopsy/polypectomy. These aspects also hold
relevance in explaining the comparatively inferior outcomes observed in the
TCGAdataset.Despite having a lowerperformanceon thegeneral accuracy,

the binary accuracy shows that our proposedmethod trained onCRS4Khas
much lower misclassification errors regarding the classification of high-
grade samples as normal, demonstrating higher robustness of the new
training approach against errors with a gap of two classes. As with other
datasets, the proposed approach trained on CRS10K shows better results,
this time by a significant margin with no overlapping between the con-
fidence intervals.

This was further confirmed by the McNemar’s test which once more
highlighting the better performance of the proposedmodel with p values of
0.00 when compared to either iMIL4Path or the same model trained on

Table 4 | Model performance evaluation on the prototype
test set

Method ACC Binary ACC Sensitivity

iMIL4Path 89.00%± 6.13 96.00% ± 3.84 1.000 ± 0.000

Ours (CRS4K) 85.00% ± 6.99 93.00% ± 5.00 1.000 ± 0.000

Ours (CRS10K)
wo/ Agg

89.00%± 6.13 98.00%± 2.74 0.986 ± 0.026

Ours (CRS10K)
w/ Agg

85.00% ± 6.99 98.00%± 2.74 0.986 ± 0.026

Accuracy is represented as (ACC). The binary accuracy is calculated as NNeo vs all. In bold are the
best results per column.

Table 5 |X2 and p value computed using the McNemar’s test
for the models evaluated on the Prototype set

Method iMIL4Path Ours (CRS4K) Ours (CRS10K)
wo/ Agg

iMIL4Path – 0.13 (0.718) 0.00 (1.000)

Ours (CRS4K) 0.13 (0.718) – 0.30 (0.584)

Ours (CRS10K)
wo/ Agg

0.00 (1.000) 0.30 (0.584) –

IfX2 is > than 3.84 the differencebetween twomethods is statistically significant. These statistically
significant differences are highlighted in bold. P value, under parentheses, is computed by calcu-
lating the area under the PDF of the chi squared distribution to the right of X2.

Fig. 4 | Confidence analysis for correct and incorrect predictions on the
Prototype set.Kernel density estimation of the confidences of correct and incorrect
predictions performed on the three-class classification problem by three distinct
models on the prototype set. The plots represent, from left to right, the proposed

method trained on CRS10K, the proposed method trained on CRS4K and iMI-
L4Path. In each plot, the blue line defines the density function of the correct samples
and the blue dashed line the mean confidence of those samples. On the other hand,
the orange solid and dashed lines represent the same for incorrect predictions.

Table 6 | Model performance evaluation on the PAIP test set

Method ACC Binary ACC Sensitivity

iMIL4Path 99.00% ± 1.95 100.00%± 0.00 1.000 ± 0.000

Ours (CRS4K) 69.00% ± 9.06 100.00%± 0.00 1.000 ± 0.000

Ours (CRS10K)
wo/ Agg

100.00%± 0.00 100.00%± 0.00 1.000 ± 0.000

Ours (CRS10K)
w/ Agg

52.00 ± 9.79 100.00%± 0.00 1.000 ± 0.000

The binary accuracy is calculated as NNeo vs all. Accuracy is represented as (ACC). In bold are the
best results per column.

Table 7 |X2 and p value computed using the McNemar’s test
for the models evaluated on the TCGA set

Method iMIL4Path Ours (CRS4K) Ours (CRS10K)
wo/ Agg

iMIL4Path – 0.04 (0.839) 26.26 (0.000)

Ours (CRS4K) 0.04 (0.839) – 31.03 (0.000)

Ours (CRS10K)
wo/ Agg

26.26 (0.000) 31.03 (0.000) –

IfX2 is > than 3.84 the differencebetween twomethods is statistically significant. These statistically
significant differences are highlighted in bold. P value, under parentheses, is computed by calcu-
lating the area under the PDF of the chi squared distribution to the right of X2.
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CRS4K. The lack of significance between the differences of iMIL4Path and
the model trained on CRS4K (p value of 0.839) further emphasises the
capability of the sampling strategy to retain the results (Table 9). The
confidence predictions for the three models were also assessed (Supple-
mentary Fig. 3), indicating a behaviour in line with the accuracy-based
performance. Also, the model trained on CRS10K showed a shift of wrong
predictions’ confidence towards smaller values, indicating that it is possible
to quantify the uncertainty of themodel and avoid themajority of thewrong

predictions. In other words, when the uncertainty is above a learnt
threshold, then themodel refuses tomake anypredictionwhich is extremely
useful in models designed as a second opinion system.

Reject option
Following the confidence analysis previously introduced, we further explore
the possibility of rejecting some samples that represent lower levels of
confidence.

On the CRS10K test set, the reject rate correlates with an improved
performance on all the algorithms displayed on Fig. 5. On our proposed
algorithm we achieve 1.5% points improvement at a rejection rate of 4%
resulting in a accuracy of approximately 95%.Moreover, if we reject 16% of
the samples (i.e., still reducing the pathologist workload by 84%) the
accuracy of themodel is of 97.27%.With a rejection rate of 50%,which is less
beneficial to pathologists, the accuracy would rise to 99.48%. The possibility
of a reject option was also explored for the prototype dataset and TCGA
dataset (Supplementary Figs. 4 and 5).We have not conducted this study on
the PAIP dataset because the performance was already around 100% in two
of the main algorithms evaluated.

Prototype usability in clinical practice
As it is currently designed, the algorithm works preferentially as a “second
opinion", allowing the assessment of difficult and troublesome cases, without
the immediate need for the intervention of a second pathologist. Due to its
“user-friendly" interface, the cases can be easily introduced into the system
and results are rapidly shown and accessed. Also, by presenting visualisation
maps, the pathologist is able to compare his own remarks to those of the
algorithm itself, towards a future “AI-assisted diagnosis", where the pathol-
ogist has a pivotal role. Further, the prototype allows for user feedback
(agreeing or not with the model’s proposed result), which can be integrated
into further updates of the software and could be leveraged in the future to
feature active learning.Also interesting,would be the possibility of using such
a prototype as a triage system on a pathologist’s daily workflow by running
upfront, before the pathologist checks the cases. Signalling the cases that
would need to be more urgently observed (namely high-risk lesions) would
allow the pathologists to prioritise their workflow. Further, by providing a
previous assessment of the cases, it could also contribute to enhancing the

Table 8 | Model performance evaluation on the TCGA test set

Method ACC Binary ACC Sensitivity

iMIL4Path 71.55% ± 5.80 80.60% ± 5.05 0.805 ± 0.051

Ours (CRS4K)
wo/ Agg

70.69% ± 5.86 98.71% ± 1.45 0.991 ± 0.012

Ours (CRS10K)
wo/ Agg

84.91%± 4.61 99.13%± 1.19 0.996 ± 0.008

Ours (CRS10K)
w/ Agg

69.83% ± 5.91 97.41% ± 2.04 0.983 ± 0.017

The binary accuracy is calculated as NNeo vs all. Accuracy is represented as (ACC). In bold are the
best results per column.

Table 9 |X2 and p value computed using the McNemar’s test
for the models evaluated on the PAIP set

Method iMIL4Path Ours (CRS4K) Ours (CRS10K)
wo/ Agg

iMIL4Path – 26.28 (0.000) 0.00 (1.000)

Ours (CRS4K) 26.28 (0.000) – 29.03 (0.000)

Ours (CRS10K)
wo/ Agg

0.00 (1.000) 29.03 (0.000) –

IfX2 is > than 3.84 the differencebetween twomethods is statistically significant. These statistically
significant differences are highlighted in bold. P value, under parentheses, is computed by calcu-
lating the area under the PDF of the chi squared distribution to the right of X2.

Fig. 5 | Accuracy-vs-Rejection-rate for the models evaluated on the CRS10K
test set. Relation between the accuracy and the percentage of samples not classified
by the model. Both axes are in percentage. The blue line represents Our method

when trained on CRS10K, while the orange line shows the same method when
trained on CRS4K. The green line is for iMIL4Path.
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pathologists’ efficiency. As such, this is one of our future work objectives.
Presently, there is no recommendation for dual independent diagnosis of
colorectal biopsies (contrary to gastric biopsies, where, in cases that surgical
treatment is considered, it is recommended to obtain a pre-treatment diag-
nostic second opinion32), but, in the future, this can also become a require-
ment for colorectal samples. As such, CAD systems to assist pathologists in
colorectal diagnosis can become even more important, being their relevance
further amplified due to the worldwide shortage of pathologists.

Discussion
In this work, we have proposed a redesig of the previousMILmethodology
applied to CRC diagnosis. We aimed to develop a scalable, efficient and
interpretable solution for this task. For this, we have worked on a mixed
supervision approach to design a sampling strategy, which utilises the
knowledge from the full supervision training as a proxy to tile utility. Sec-
ondly, we studied the confidence that the model shows in its predictions.
Our target in this latter part was to infer the possibility of using a reject
option based on the confidence of the model. The results have shown that
this confidencehas the potential to be a resource to quantify uncertainty and
avoidwrong predictions on low-certainty scenarios. Themodel was entirely
integrated within a web-based prototype to assist pathologists in their
routine work.

The proposed methodology was evaluated on several datasets,
including two external sets. Through this evaluation, it was possible to infer
that the performance of the proposed methodology benefits from a larger
dataset and surpasses the performance of previous state-of-the-art models
that were evaluated on this benchmark. As such, and given the excelling
results that originated from the increase in the dataset, we are also publicly
releasing the majority of the CRS10K dataset WSIs and case diagnostic
labels, one of the largest publicly available colorectal datasets composed of
H&E images in the literature, including the test set for the benchmark of
distinct approaches across the literature30.

Our findings have several noteworthy elements. First, we have shown
thatdespite the ability to lead tobettermodels, increasing thedataset size can
be a double-edged sword due to the computational requirements of MIL
solutions. With this in mind, and while conducting this study on one of the
largest datasets for CRS, we have devised a sampling strategy that seems to
minimise the information lost during training, leading to a comparable
performance at 6x less processing time. Ourmethod has also demonstrated
the power of having a small portion of the dataset annotated to initialise the
weights of the MIL model. We have further shown, that models trained on
larger datasets seem to approximate more stable confidence distributions,
leading to the possibility of using a reject option to comply with clinical
requirements on the performance of themodel. Finally, we have highlighted
an interpretabilitymethod that is integrated intoourprototype and supports
the decision process of pathologists.

Within the evaluation of datasets collected on similar configurations to
the training data, the performance of the proposed model represents a step
towards better algorithms for colorectal pathology. The high sensitivity did
not compromise the overall accuracy. On datasets that originate from other
centres and scanners, the performancewas around 100% of accuracy in one
and around 85% on the other, with the latter coming from completely
different tissue samples. The comparisonwith other studies is highly limited
by the test data. In our scenario, we have tested in a pool of 1332 samples,
which is larger than several studies’ train sets. As we are releasing our test
dataset, further research methods can be easily compared through it.

We cannote that the strongperformanceof themodel, alignedwith the
prototype and the predictionmaps, supports the utilisation of such a system
as a second opinion within the routine process in a pathology lab, assisting
pathologists in their daily routine, ensuring higher quality and, thus, better
patient care.

Nonetheless, the proposed algorithm still has potential for improve-
ment. We aim to include the recognition of serrated lesions, to distinguish
normal mucosa from significant inflammatory alterations/diseases, to
stratify high-risk lesions into high-grade dysplasia and invasive carcinomas

and to identify other neoplasia subtypes. Thiswill enable the prototype to be
usedupfront in the future. Further,wewould like to leverage themodel to be
able to evaluate also surgical specimens. Another relevant step will be the
merge of our dataset and external ones for training, besides only testing it on
external samples. This will enhance its generalisation capabilities and pro-
vide a more robust system. Lastly, we intend to measure the “user experi-
ence” and feedback from the pathologists, by its gradual implementation in
general laboratory routine work. The following goals comprise a more
extensive evaluation of themodel across more scanner brands and labs.We
also want to promote certain mechanisms that would allow for more direct
and integrated uncertainty estimation. We have also been looking towards
aggregationmethods, but, since in themajority of them there is an increased
risk of false negatives, we have work to do in that research direction.

Methods
In this section, after defining the problem at hand, we introduce the pro-
posed dataset used to train, validate and test themodel, the external datasets
to evaluate the generalisation capabilities of the model and the pre-
processingpipeline.After, we describe indetail themethodology followed to
create the deep learning model and to design the experiments. Finally, we
also detail the clinical assessment and evaluation of the model. This section
also includes a description of the two main bottlenecks that can affect this
type of systems. The first is the difficulty of collecting data and having large
amounts of data annotatedby experts. The second,whichbecomes apparent
only after the first bottleneck is overcame, is the difficulty of scaling these
systemsaswe increase the size of the trainingdata.Without solving the latter
problem, it would be impossible to take full advantage of the benefits of
collecting large amounts of data.

Problem definition
Digitised CRC histological samples have large dimensions, which are far
bigger than the traditional images used in medical or general computer
vision problems. Labelling such images is expensive and highly dependent
on the availability of expert knowledge. This limits the availability of WSIs,
and, in scenarios where these are available, meaningful annotations are
usually lacking. On the other hand, it is easier to label the dataset at the slide
level. The inclusion of detailed spatial annotations on approximately 10%of
the dataset has been shown to positively impact the performance of deep
learning algorithms15,31.

To fully leverage the potential of spatial and slide labels, we propose a
deep learning pipeline, based on previous approaches15,31, using mixed
supervision. Each slide, S is composed of a set of tiles T s;n, where s
represents the index of the slide and n∈ {1,⋯ , ns} the tile number. Fur-
thermore, there is an inherent order in the grading used to classify the tiles
into one of the CðkÞ

s;n classes, which represents a variation in severity. We
define CðkÞ

s and CðkÞ
s;n 2 {"Non-Neoplastic", “Low-Grade Lesion", “High-

Grade Lesion"}, and the label of each slide s corresponds to the index (k) of
their class.We further define theoutput of themodel as ŷs;n where ŷs;nðkÞ is
the model estimation for PðCðkÞ

s;nÞ: The final prediction of the model is
defined as Ĉs 2 f1; ::;Kg for a slide prediction and Ĉs;n 2 f1; ::;Kg for a
tile prediction, where K = 3. The latter derives from argmax

k
PðCðkÞ

s;nÞ. For
fully supervised learning, only strongly annotated slides are useful, and for
those, the class of each tile CðkÞ

s;n is known. The remaining slides are
deprived of these detailed labels, hence, they can only be leveraged by
training algorithmswithweakly supervision using slide level labels asCðkÞ

s .
To be used by these algorithms, the weakly annotated slides have only a
single label for the entire bag (set) of tiles, as seen in Fig. 6. Following the
order of the labels and the clinical knowledge, we assume that the pre-
dicted slide label Ĉs is the most severe case of the tile labels:

Ĉs ¼ max
n

fĈs;ng:

In other words, if there is at least one tile classified as containing high-
grade dysplasia, then the entire slide that contains the tile is labelled/
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annotated accordingly. On the other end of the spectrum, if the worst tile is
labeled as non-neoplastic, then it is assumed that there is no dysplasia in the
entire set of tiles. This is a generalisationofmultiple-instance learning (MIL)
to an ordinal classification problem, as proposed by ref. 15.

Datasets
The spectrum of large-scale CRC/CRS datasets is increasing due to the
contributions of several researchers30. Two datasets that have been recently
introduced in the literature are the CRS1K15 andCRS4K31 datasets from our
research group. Since the latter is an extension of the former with roughly
four timesmore slides, it will be the baseline dataset for the remaining of this
document.We further extend this with theCRS10Kdataset, which contains
9.26x and 2.36x more slides than CRS1K and CRS4K, respectively. We
gathered our data retrospectively from IMP Diagnostics’ archive, sequen-
tially selecting all cases thatmatched the study’s diagnostic categories. Thus,
we performed consecutive sampling and our cases are a representative
sample of the study’s population, namely regarding pathology distribution
across sex and age in the population. Similarly, the number of tiles is mul-
tiplied by a factor of 12.2 and 2.58 (Table 10). This volume of slides is

translated into an increase in the flexibility to design experiments and infer
the robustness of the model. Thus, the inclusion of a test set separated from
the validation set is now facilitated. All procedures were in accordance with
the ethical standards of the 1964 Helsinki declaration and its later amend-
ments and comparable ethical standards. All datawas anonymized and data
collection and usage were performed in accordance with the General Data
Protection Regulation (GDPR) and national laws and regulations. Ethical
approval was waived by the local Ethics Committee of INESC TEC in view
of the retrospective nature of the study and all the procedures being per-
formed were part of the routine care.

The set is composed of colorectal biopsies and polypectomies
(excluding surgical specimens). CRS10K slides are labelled according to
three main categories: non-neoplastic (NNeo), low-grade lesions (LG), and
high-grade lesions (HG). The first, contains normal colorectal mucosa,
hyperplasia and non-specific inflammation. LG lesions correspond to
conventional adenomas with low-grade dysplasia. Finally, HG lesions are
composed high-grade dysplasia adenomas (including intramucosal carci-
nomas) and invasive adenocarcinomas. Slides with suspicion or known
history of inflammatory bowel disease, infectious diseases, serrated lesions
or other polyp types were not included in the dataset.

The slides were digitised with Leica GT450WSI scanners, at 0.26 μm/
pixel at 40 ×magnification. The cases were initially seen and classified
(labelled) by one of three pathologists. The pathologist revised and classified
the slides, and then compared the result with the initial report diagnosis
(which served as a second-grader). If there was a match between both, no
further steps were taken. In discordant cases, a third pathologist served as a
tie-breaker. Roughly 9% of the dataset (967 slides and over a million tiles)
were manually annotated by a pathologist and rechecked by the other, in
turn, using the Sedeen Viewer software33. For complex cases, or when the
agreement for a joint decision could not be reached, a third pathologist
reevaluated the annotation.

The CRS10K dataset was divided into train, validation and test
sets. The training set includes all the strongly annotated slides, for
fully-supervised learning, and a random selection of weakly-
annotated samples. The validation set, on the other hand, consists
of only weakly-annotated slides. Finally, the test set was selected from
the new data added to extend the previous datasets and only includes
weakly-annotated slides. Thus, it is completely separated from the
training and validation sets of previous works. The test set, is publicly
available, so that future research can directly compare their results
and use this set as a benchmark.

+

WSI

tilling

annotation

annotated tiles set

WSI tilling bag of tiles

Fig. 6 | Overview of the proposed problem definition. Problem definition as a fully
supervised task (on top), and as a weakly-supervised task (bottom).

Table 10 | Dataset summary, with the number of slides (annotated samples are detailed in parentheses) and tiles distributed by
class for all the datasets used in this study

NNeo LG HG Total

# slides 300 (6) 552 (35) 281 (59) 1133 (100)

CRS1K dataset15 # annotated tiles 49,640 77,946 83,649 211,235

# non-annotated tiles – – – 1,111,361

# slides 663 (12) 2394 (207) 1376 (181) 4433 (400)

CRS4K dataset31 # annotated tiles 145,898 196,116 163,603 505,617

# non-annotated tiles – – – 5,265,362

# slides 1740 (12) 5387 (534) 3369 (421) 10,496 (967)

CRS10K dataset # annotated tiles 338,979 371,587 341,268 1,051,834

# non-annotated tiles – – – 13,571,871

CRS Prototype # slides 28 44 28 100

# non-annotated tiles – – – 244,160

PAIP38 # slides – – 100 100

# non-annotated tiles – – – 97,392

TCGA37 # slides 1 1 230 232

# non-annotated tiles – – – 1,568,584
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Of note, when collected from routine archives, the slides can be digi-
tised with duplicated tissue areas. Hence, the workflow for the automatic
diagnostic also included an automatic fragment detection and counting
system, to avoid repeated and lower quality fragments34.

Furthermore, as detailed in the following sections, this work comprises
the development of a fully-functional prototype to be used in clinical
practice. Leveraging this prototype, itwaspossible to further collect anew set
with 100 slides. It differs from the CRS10K dataset, as these cases were
actively collected from the current year’s routine exams. We argue that this
might better reflect the real-world data distribution. Hence, we introduce
this set as a distinct dataset to evaluate the robustness of the presented
methodology. Differently from the datasets discussed below, the CRS Pro-
totype dataset has amore balanced distribution of the slide labels. Although
useful, using the fragment counting and selection algorithm for the eva-
luation could potentiate the propagation of errors from one system to
another. Thus, in this evaluation, we did not use the fragment selection
algorithm, and as shown in Table 10, the number of tiles per slide doubles
when compared to CRS10K, which had its fragments carefully selected.

To evaluate the domain generalisation of the proposed approach, two
external datasets, publicly available, were used. Thefirst dataset is composed
of samples of theTCGA-COAD35 andTCGA-READ36 collections fromThe
Cancer Imaging Archive37, which are composed in general by resection
samples (in contrast to our dataset, composed only of biopsies and poly-
pectomies). Samples containing pen markers, large air bubbles over tissue,
tissue folds, and other artefacts affecting large areas of the slide were
excluded. The final selection includeded 232 WSIs reviewed and validated
by the same pathologists that reviewed our in-house datasets. 230 of those
samples were diagnosed as high-grade lesions, whereas the remaining two
have been diagnosed as low-grade and non-neoplastic. For this dataset, the
specificmodel of the scanner used to digitise the images is unknown, but the
file type (".svs") matches the file type of the training data. The second
external dataset contains 100H&E slides from the Pathology AI Platform38

colorectal cohort. All included cases had a more superficial sampling of the
lesions, better comparingwith our datasets. All theWSIs in this datasetwere

digitisedwith anAperioAT2 at 20Xmagnification. Finally, the pathologists’
team followed the same guidelines to review and validate all theWSI, which
were all classified as high-grade lesions. It is interesting tonote thatwhile the
PAIP contains significantly fewer tiles per slide, around 973, than the
CRS10K dataset, around 1293, the TCGA dataset shows the largest amount
of tissue per slide with an average of 6761 tiles as seen in Table 10.

Data pre-processing
H&E slides are composed of two distinct elements, white background and
colourful tissue. Since the former is notmeaningful for thediagnostic, thepre-
processing of these slides incorporates an automatic tissue segmentationwith
Otsu’s thresholding39 on the saturation (S) channel of the HSV colour space,
resulting in a separation between the tissue regions and the background. The
result of this step, which receives as input a 32 × downsampled slide, is the
maskused for the following steps. Leveraging this previous output, tileswith a
dimension of 512 × 512 pixels (Fig. 7) were extracted from the original slide
(without any downsampling) at its maximum magnification (40 × ), if they
did not include any portion of background (i.e., a 100% tissue threshold was
used). Following previous experiments in the literature, our empirical
assessment, and the confirmation that smaller tiles would significantly
increase the number of tiles and the complexity of the task, 512 × 512 was
chosenas the tile size.Moreover, it is believed that512 × 512 is the smallest tile
size that still incorporates enough information tomakeagooddiagnosticwith
the possibility of visually explaining the decision15. The selected threshold of
100% further reduces the number of tiles by not including the tissue at the
edges and decreases the complexity of the task, since the model does not see
the background at any moment. Due to tissue variations in different images,
there is also a different number of tiles extracted per image.

Methodology
Themassive size of images, which translates to thousands of tiles per image,
allied to a large number of samples in the CRS10K dataset, bottlenecks the
training of weakly-supervised models based on multiple instance learning
(MIL). Hence, in this document, we propose a mix-supervision approach
with self-contained tile sampling to diagnoseCRC samples fromWSIs. This
subsection comprises themethodology, which includes supervised training,
sampling and weakly-supervised learning.

Supervised training. As mentioned in previous sections, spatial anno-
tations are rare in large quantities. However, these include domain
information, given by the expert annotator, concerning the most
meaningful areas and what are the most and less severe tiles. Thus, they
can facilitate the initial optimisation of a deep neural network. As shown
in the literature, there has been some research on the impact of starting
the training with a few iterations of fully-supervised training15,40. We
further explore this in three different ways. First, we have 967 annotated
slides resulting in more than one million annotated tiles for supervised
training. Secondly, attending to the size of our dataset and the need for a
stronger initial supervised training, the models are trained for 50 epochs,
and their performance was monitored over specific checkpoint epochs.
Finally, we explore this pre-trained model as the main tool to sample
useful tiles for the weakly-supervised task.

Tile sampling. Our scenario presents a particularly difficult condition for
scaling the training data. First, let’s consider the structure of the data,
which consists of, on average, more than one thousand tiles per slide. If
we carefully analyse Table 10, we can see that the CRS10K dataset and the
CRS Prototype contain, when combined, ≈ 13.8 million tiles. These tiles
come after preprocessing, as such, tiles containing background are not
included. If we further analyse this data, and considering that each tile is
of dimension 512 × 512 × 3, then we have ≈ 3.6 trillion pixels per colour
channel, or ≈ 10.9 trillion pixels in total. Reference 41 described the
difficulties of processing 399 WSI in a single GPU. With the following
strategy we processed all the 10928WSI described in Table 10 utilising a
single GPU.

Fig. 7 | Examples of regions and a sample tile with 512 × 512 pixels
(40 ×magnification). The represented classes are: non-neoplastic (on top), low-
grade dysplasia (on the middle) and high-grade dysplasia (on the bottom) with a
width and height of 0.13 milimeters (mm) each.
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Within the set of tiles from a slide, some tiles providemeaningful value
for the prediction, and others do not add extra information. In other words,
for the CRS10K dataset, the extensive, time and energy-consuming process
of going through 13 million tiles every epoch can be avoided, and, as result,
these models can be trained for more epochs. Nowadays, there is an
increasing concern regarding energy and electricity consumption. Thus,
these concerns, together with the sustainability goals, further support the
importance of more efficient training processes.

Let T be the original set of tiles, and T s be the original set of tiles from
the slide s, the former is composedbyaunionof the latterof all the slides (Eq.
(1)). We propose to map T to a smaller set of tilesM without affecting the
overall performance and behaviour of the trained algorithm.

T ¼
[S
s¼1

T s ð1Þ

The model trained in a fully supervised task, previously described,
provides a good estimation of the utility of each tile. Hence, we utilise the
function (Φ) learned by themodel to compute the predicted severity of each
tile. In other words,Φ represents the supervised model already trained. We
selectM tiles per slide (M = 200 in our experimental setup) utilising a Top-k
function (withk set to 200) tobe retained for theweakly-supervised training.
As indicatedby the results presented in the following sections, the value ofM
was selected in accordance with a trade-off between information lost and
training time. This is formalised in Eq. (2).

Ms ¼ Top-k ðΦðT sÞÞ ð2Þ
For instance, in the CRS10K dataset, the total number of tiles after

sampling would be at most 2,099,200, which represents a reduction of
6.46 × when compared to the total number of slides. Despite this upper
bound on the number of tiles, there areWSI samples that contain less than
M tiles, and as such, they remain unsampled and the actual total number of

tiles after sampling is potentially lower. During the evaluation and test time,
there is no sampling.

Weakly-supervised learning. The weakly-supervised learning
approach designed for our methodology follows the same principles of
recent work31. It is divided into two distinct stages, tile severity analysis
and training. The former utilises the pre-trained model to evaluate the
severity of every tile in a set of tiles. In the first epoch, T , the set of all the
tiles in the complete dataset is used. This is possible since the model used
to assess the severity in this epoch is the same one used for sampling.
Hence, both tasks are integrated with the initial epoch. The following
epochs utilise the sampled tile setM instead of the original set. In other
words, the bags (i.e., the representation of the slides) are all truncated to
size 200. This overall structure is represented in Fig. 8. Moreover, the
weakly-supervised approach leverages only slide labels.

The link between both stages is guided by a slide-wise tile ranking
approach based on the expected severity as proposed in15. For tile T s;n, the
expected severity is defined as

EðĈs;nÞ ¼
XK
i¼1

i× ŷs;nðiÞ ð3Þ

where ŷs;nðiÞ is a random vector of size K, which represents the PðCðiÞ
s;nÞ for

the tile n of the slide s. After this analysis, the five most severe tiles are
selected from each bag of 200 tiles for training. The number of selected tiles
was chosen in accordancewith previous studies31. Thesefive tiles per bag are
used to train the proposed model for one more epoch. An epoch is com-
posed of both stages, whichmeans that the tiles used for training vary across
epochs. The slide label is used as the ground truth of all five tiles of that same
slide used for network optimisation. For validation and evaluation, only the
most severe tile is used for diagnostics. Although itmight lead to an increase
in false positives, it shall significantly reduce false negatives. Furthermore,

Fig. 8 | Scheme for the proposedmixed precision workflow.Overall scheme of the
proposed methodology containing the mix-supervision framework that is respon-
sible for diagnosing colorectal samples fromWSI. The top layer consists of the fully-

supervised stage, the middle layer consists of the sampling strategy and the bottom
layer represents the weakly supervised training stage. Tile sizes are in pixels (px).
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weargue that increasing the variability andquantity of data available leads to
a better balance between the reduction of these two types of errors.

Reject option
Automatic systems designed to assist pathologists should be high-
performing and achieve outstanding values in evaluation metrics. How-
ever, it is equally important for these systems to recognise their limitations
and defer to expert pathologists in challenging cases. Recognising the
importance of this feature, we introduce a reject option to our model.
Pathologists can further tune the expected rate of rejection and the per-
formance on a set of metrics to better suit the model to their needs.

The adopted strategy creates the possibility to reject a sample based on
the predicted probability of the predicted label. Then, the desired rejection
rate is calculated from the percentiles of all confidence values. This approach
magnifies the innate capabilities of deep learning systems to be used as a
second/third opinion system.

Confidence interval
In order to quantify the uncertainty of a result, it is common to compute the
95 percent confidence interval. In this way, two different models can be
easily understood and compared based on the overlap of their confidence
intervals. The standard approach to calculating these intervals requires
several runs of a single experiment. As we increase the number of runs, our
interval becomes narrower. However, this procedure is impractical for the
computationally intensive experiments presented in this document. Hence,
we use an independent test set to approximate the confidence interval as a
Gaussian function42. To do so, we compute the standard error (SE) of an
evaluation metricm, which is dependent on the number of samples (n), as
seen in Equation (4).

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
×m× ð1�mÞ

r
ð4Þ

For the SE computation to be mathematically correct, the metric m
must originate from a set of Bernoulli trials. In other words, if each pre-
diction is considered aBernoulli trial, then themetric should classify themas
correct or incorrect. The number of correct samples is then given by a
Binomial distribution X ~ (n, p), where p is the probability of correctly
predicting a label, andn is the number of samples. For instance, the accuracy
is a metric that fits all these constraints.

Following the definition and the properties of a Normal distribution,
we compute the number of standard deviations (z), known as a standard
score, that can be translated to the desired confidence (c) set to 95% of the
area under a normal distribution. This is a well-studied value, which is
approximately z ≈ 1.96. This value z is then used to calculate the confidence
interval, calculated as the product of z and SE as seen in Equation (5).

M ± z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
×m× ð1�mÞ

r
ð5Þ

To infer the statistical significance of the different performance
of different classifiers the McNemar’s test43 was used. These statistical
tests have been used in the literature for comparison of independent
systems and there are several variations44. For the McNemar’s test the
classifiers must be compared in pairs. For each pair, it is necessary to
build a contigency table containing four entries: (a) samples mis-
classified by both; (b) samples misclassified only by the second clas-
sifier; (c) samples misclassified only by the first classifier; (d) samples
correctly classified by both. The null hypothesis of this test states that
the second (b) and third (c) entries have equal probability. X 2 cor-
rected for continuity45is calculated as follows:

X 2 ¼ ðjb� cj � 1Þ2
bþ c

ð6Þ

Using a significance value of 0.95, we can reject the null hypothesis if
X 2 > 3:841, which corresponds to the area between 0.05 and+∞ for a Chi-
Squared distribution with 1 degree of freedom.

Label correction
The complex process of labelling thousands of WSI with CRC diagnostic
grades is a task of increased difficulty. It should also be noted and taken into
account that grading colorectal dysplasia is hurdled by considerable sub-
jectivity, so it is to be expected that some borderline caseswill be classified by
some pathologists as low-grade and others as high-grade. Moreover, as the
number of cases increases, it becomes increasingly difficult to maintain
perfect criteria and avoidmislabelling. For this reason,we have extended the
analysis of the model’s performance to understand its errors and its cap-
ability to detect mislabelled slides.

After training the proposed model, it was evaluated on the test data.
Following this evaluation, we identified the misclassified slides and con-
ducted a second round of labelling. These cases were all blindly reviewed by
two pathologists, and discordant cases from the initial ground truth were
discussed and classified by both pathologists (and in case of doubt/com-
plexity, a third pathologist was also consulted).We tried tomaintain similar
criteria between the graders and always followed the same guidelines. These
new labels were used to rectify the performance of all the algorithms eval-
uated in the test set. We argue that the information regarding the strength/
confidence of predictions of a model used as a second opinion is of utter
importance. A correct integration of this feature can be shown as extremely
insightful for the pathologists using the developed tool.

Experimental setup
For our experimental setup, we divide our data into training and validation
sets. Besides, we further evaluate the performance of the former in our test
set composed of slides never seen by any of themethods presented or in the
literature. Following the split of these three sets, we have 8587, 1009 and
900 stratified non-overlapping samples in the training, validation and test
set, respectively.

In an attempt to also contribute to reproducible research, the training
of all the versions of the proposed algorithm uses the deterministic con-
straints available onPyTorch.Theusage of deterministic constraints implies
a trade-off between performance, either in terms of algorithmic efficiency or
on its predictive power, and the complement with reproducible research
guidelines. As such, due to the current progress in the field, we have chosen
to comply with the reproducible research guidelines.

All the trained backbone networks were ResNet-3446 with ImageNet
weights. PyTorch was used to train these networks with the Adaptive
Moment Estimation (Adam)47 optimiser, a learning rate of 6 × 10−6 and a
weight decay of 3 × 10−4. The training batch size was set to 32 for both fully
and weakly supervised training, while the test and inference batch size was
256. The performance of the model was verified on the validation set used
for model selection in terms of the best accuracies and quadratic weighted
kappa (QWK). The training was accelerated by an Nvidia Tesla V100
(32GB) GPU for 50 epochs of both weakly and fully supervised learning. In
addition to the proposed methodology, we extended our experiments to
include the aggregation approach proposed by Neto et al.31 on top of our
best-performingmethod. This strategy does not consider spatial location or
context of the tiles, instead it select the sevenmost severe tiles, concatenates
the output of the last convolutional layer for eachof those tiles and feeds it to
a multi-layer perceptron.

The number of epochs for training the fully- and weakly-
supervised models was selected as follows: the fully supervised model
was evaluated at every ten epochs for its performance on a weakly
supervised scenario (using the non annotated samples), when its
performance was stable the training was stopped; for the weakly-
supervised model, several experiments were conducted on smaller
versions of the training set and validated on the validation set. For the
latter, besides training for 50 epochs, the best weights (with respect to
the performance on the validation set) were selected.
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Prototype and interpretability assessment
The proposed algorithm was integrated into a fully functional proto-
type to enable its use and validation in a real clinical workflow. This
system was developed as a server-side web application that can be

accessed by any pathologist in the lab. The system supports the eva-
luation of either a single slide or a batch of slides simultaneously and in
real time. It also caches the most recent results, allowing re-evaluation
without the need to re-upload slides. In addition to displaying the slide

Fig. 9 | Main view of the CAD system prototype for CRS. Slide identification, confidence per class, diagnostic, mask overlay controller, results download as csv and slide
search are some of the features visible. Slide identification is anonymised.

Fig. 10 | Zoomed view of a slide from the CAD system prototype. Further includes the predictions map with a small overlay threshold. Slide identification is anonymised.
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diagnosis, and confidence level for each class, a visual explanation map
is also retrieved, to draw the pathologist’s attention to key tissue areas
within each slide (all seen in Fig. 9). The opaqueness of the map can be
set to different thresholds, allowing the pathologist to control its
overlay over the tissue. An example of the zoomed version of a slide
with lower overlay of the map is shown in Fig. 10.

Furthermore, the prototype also allows user feedback where the user
can accept/reject a result and provide a justification (Fig. 11), an important
feature for software updates, research development and possible active
learning frameworks that can be developed in the future. These results can
be downloaded with the corrected labels to allow for further retraining of
the model.

There are several advantages to developing such a system as a server-
side web application. First, it does not require any specific installation or
dedicated local storage in theuser’s device. Secondly, it canbe accessed at the
same time by several pathologists from different locations, allowing for a
quick review of a case by multiple pathologists without data transference.
Moreover, the lack of local storage of clinical data increases the privacy of
patient data, which can only be accessed through a highly encrypted virtual
private network (VPN). Finally, all the processing can be moved to an
efficient GPU, thus reducing the processing time by several orders of
magnitude. Similar behaviour on a local machine would require the
installation of dedicated GPUs in the pathologists’ personal devices. This
platform is the first Pathology prototype for colorectal diagnosis developed
in Portugal, and, as far as we know, one of the pioneers in the world. Its
design was also carefully thought to be aligned with the needs of the
pathologists.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
A large portion of the datasethas beenpublicly released30 and is identifiedby
the following https://doi.org/10.25747/fb1q-j507. This data composed of

WSI and respective labels has been released under CC BY-NC. This release
is part of the efforts of IMPDiagnostics and INESCTEC to advance science
and share knowledge.
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